Structure of Di- μ-chloro-bis[trichloro(p-tolylimino)tungsten(VI)], $\left[\left\{\mathrm{WCl}_{3}\left(\boldsymbol{p}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}(\mu-\mathrm{Cl})_{2}\right]$

By William Clegg and R. John Errington
Department of Inorganic Chemistry, The University, Newcastle upon Tyne NE1 7RU, England

(Received 29 May 1987; accepted 17 June 1987)

Abstract. $\left[\mathrm{W}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}\right)_{2} \mathrm{Cl}_{8}\right], M_{r}=861 \cdot 6$, triclinic, $P \overline{1}$, $a=6 \cdot 129$ (8), $b=9.257$ (11), $c=10.028$ (13) \AA, α $=88.88(9), \quad \beta=83.33(10), \quad \gamma=85.18(11)^{\circ}, \quad V=$ $563 \cdot 1 \AA^{3}, \quad Z=1, \quad D_{x}=2.541 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Мо $K \alpha)=$ $0.71073 \AA, \mu=11.4 \mathrm{~mm}^{-1}, F(000)=396, T=293 \mathrm{~K}$, $R=0.068$ for 1196 unique reflections with $F>4 \sigma(F)$. In the centrosymmetric dimeric molecules, octahedrally coordinated W atoms are bridged asymmetrically by Cl ligands $[\mathrm{W}-\mathrm{Cl}=2.415(6) \quad$ and $\left.2 \cdot 717(6) \AA, \quad \mathrm{W}-\mathrm{Cl}-\mathrm{W}=101 \cdot 6(2)^{\circ}\right]$. The imino ligands, with $\mathrm{W}-\mathrm{N}=1.712$ (18) \AA, are situated trans to the longer $\mathrm{W}-\mathrm{Cl}$ bridge bonds, and the remaining coordination sites are occupied by terminal Cl [W$\mathrm{Cl}=2 \cdot 286$ (7)-2.298 (7) $\AA]$. The central $\mathrm{W}_{2} \mathrm{Cl}_{2}$ ring is strictly planar. The essentially planar imino ligands [r.m.s. $\Delta=0.01$ (1) \AA for C and N atoms] are inclined at only $7(1)^{\circ}$ to the central ring and the bonding is linear at $\mathrm{N}\left[\mathrm{W}-\mathrm{N}-\mathrm{C}=177(2)^{\circ}\right]$. The octahedral coordination of W is considerably distorted, major deviations from regular octahedral angles being $\mathrm{Cl}(1)-$ $\mathrm{W}-\mathrm{Cl}\left(1^{\prime}\right)=78.4(2)^{\circ}$ involving the bridging Cl , and $\mathrm{Cl}(2)-\mathrm{W}-\mathrm{Cl}(3)=166.9$ (2) ${ }^{\circ}$ involving the terminal Cl atoms above and below the main molecular plane, which are displaced towards the bridging region.

Experimental. Compound prepared from WOCl_{4} and $p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NCO}$ in refluxing toluene, large brown prisms obtained by cooling to room temperature. Cleaved fragment size $0.50 \times 0.54 \times 0.58 \mathrm{~mm}$, mounted in Lindemann capillary. Siemens AED2 diffractometer, graphite-monochromated Mo $K \alpha$ radiation, cell parameters from 2θ values of 32 reflections ($20<$ $2 \theta<25^{\circ}$) measured at $\pm \omega$. Intensity measurements in ω / θ scan mode, scan range 0.85° below α_{1} to 0.85° above α_{2}, scan time $17.5 \mathrm{~s}, 2 \theta_{\max }=45^{\circ}, h-6 \rightarrow 5$, $k \rightarrow 9 \rightarrow 9, l-10 \rightarrow 10$, no significant variation in intensity for three standard reflections. Reflection profiles were generally broad and of poor shape. Semi-empirical absorption correction (transmission 0.002-0.015). 2735 reflections, 1255 unique ($R_{\mathrm{int}}=0 \cdot 16$), 1196 with $F>4 \sigma(F)$ for structure determination (by Patterson and difference syntheses) and refinement (blockedcascade least squares on F), $w^{-1}=\sigma^{2}(F)+0.005 F^{2}$. Anisotropic thermal parameters for all non-H atoms, aromatic H atoms constrained $[\mathrm{C}-\mathrm{H}=0.96 \AA$ on

Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{3}\right)$

$U_{\text {eq }}=\frac{1}{3}$ (trace of the orthogonalized $U_{i j}$ matrix).				
x				
x	y	z	$U_{\text {eq }}$	
W	$5103(1)$	$3547(1)$	$3550(1)$	$47(1)$
$\mathrm{Cl}(1)$	$7407(7)$	$5319(6)$	$4245(7)$	$53(2)$
$\mathrm{Cl}(2)$	$6606(8)$	$1981(6)$	$5069(6)$	$60(2)$
$\mathrm{Cl}(3)$	$3285(9)$	$5417(7)$	$2460(7)$	$64(2)$
$\mathrm{Cl}(4)$	$2255(9)$	$2119(7)$	$3473(7)$	$70(2)$
N	$6678(26)$	$2952(17)$	$2114(20)$	$59(7)$
$\mathrm{C}(1)$	$7944(28)$	$2522(24)$	$899(22)$	$51(7)$
$\mathrm{C}(2)$	$9910(33)$	$3106(25)$	$493(30)$	$73(10)$
$\mathrm{C}(3)$	$11051(31)$	$2565(25)$	$-787(32)$	$85(11)$
$\mathrm{C}(4)$	$10235(29)$	$1643(19)$	$-1441(17)$	$44(6)$
$\mathrm{C}(5)$	$8214(35)$	$1098(25)$	$-1076(24)$	$61(8)$
$\mathrm{C}(6)$	$7063(27)$	$1518(23)$	$139(21)$	$50(7)$
$\mathrm{C}(7)$	$11374(44)$	$1106(29)$	$-2839(26)$	$79(9)$

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{W}-\mathrm{Cl}(1)$	$2 \cdot 415$ (6)	W-Cl(1')	2.717 (6)
$\mathrm{W}-\mathrm{Cl}(2)$	$2 \cdot 298$ (7)	$\mathrm{W}-\mathrm{Cl}(3)$	$2 \cdot 307$ (7)
$\mathrm{W}-\mathrm{Cl}(4)$	$2 \cdot 286$ (7)	W-N	1.712 (18)
$\mathrm{N}-\mathrm{C}(1)$	1.411 (27)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.377 (28)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.395 (31)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.464 (39)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.257 (33)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.384 (28)
C(4)-C(7)	1.562 (30)	C(5)-C(6)	1.381 (30)
$\mathrm{Cl}(1)-\mathrm{W}-\mathrm{Cl}(2)$	87.0 (2)	$\mathrm{Cl}(1)-\mathrm{W}-\mathrm{Cl}(3)$	87.2 (2)
$\mathrm{Cl}(2)-\mathrm{W}-\mathrm{Cl}(3)$	$166 \cdot 9$ (2)	$\mathrm{Cl}(1)-\mathrm{W}-\mathrm{Cl}(4)$	$162 \cdot 3$ (2)
$\mathrm{Cl}(2)-\mathrm{W}-\mathrm{Cl}(4)$	90.6 (2)	$\mathrm{Cl}(3)-\mathrm{W}-\mathrm{Cl}(4)$	91.4 (2)
$\mathrm{Cl}(1)-\mathrm{W}-\mathrm{N}$	99.6 (6)	$\mathrm{Cl}(2)-\mathrm{W}-\mathrm{N}$	99.2 (6)
$\mathrm{Cl}(3)-\mathrm{W}-\mathrm{N}$	93.4 (6)	$\mathrm{Cl}(4)-\mathrm{W}-\mathrm{N}$	98.1 (6)
$\mathrm{Cl}(1)-\mathrm{W}-\mathrm{Cl}\left(1^{\prime}\right)$	78.4 (2)	$\mathrm{Cl}(2)-\mathrm{W}-\mathrm{Cl}\left(1^{\prime}\right)$	84.2 (2)
$\mathrm{Cl}(3)-\mathrm{W}-\mathrm{Cl}\left(1^{\prime}\right)$	83.1 (2)	$\mathrm{Cl}(4)-\mathrm{W}-\mathrm{Cl}\left(1^{\prime}\right)$	84.0 (2)
$\mathrm{N}-\mathrm{W}-\mathrm{Cl}\left(1^{\prime}\right)$	$176 \cdot 0$ (6)	$\mathrm{W}-\mathrm{Cl}(1)-\mathrm{W}^{\prime}$	101.6 (2)
$\mathrm{W}-\mathrm{N}-\mathrm{C}(1)$	$177 \cdot 3$ (15)	$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)$	$120 \cdot 8$ (21)
$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(6)$	116.3 (16)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	122.9 (20)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$115 \cdot 1$ (22)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	120.7 (19)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$124 \cdot 8$ (19)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(7)$	121.4 (20)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(7)$	113.6 (19)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	118.1 (21)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	118.3 (18)		

Symmetry operator (inversion) for primed atoms: $1-x, 1-y, 1-z$.
ring-angle externai bisectors, $U(\mathrm{H})=1 \cdot 2 U_{\mathrm{eq}}(\mathrm{C})$], no methyl H atoms, negligible extinction. 118 parameters, max. $\Delta / \sigma=0.009$, mean $=0.002, R=0.068, w R=$ 0.105 , slope of normal probability plot $=0.87$, max. $\Delta \rho=2.68, \mathrm{~min} .=-1.87 \mathrm{e} \AA^{-3}$ (largest features close to W atom). Scattering factors from International Tables for X-ray Crystallography (1974); SHELXTL programs (Sheldrick, 1985).

Fig. 1. Structure of the dimeric molecule, without H atoms, showing the atom-labelling scheme.

Atomic coordinates and equivalent isotropic thermal parameters are given in Table 1,* bond lengths and angles in Table 2. The molecular structure is shown in Fig. 1.

[^0]Related literature. A similar structure has been observed for the alkylimido complexes $\left[\left\{\mathrm{WCl}_{3}(\mathrm{~N} R)\right\}_{2}-\right.$ $\left.(\mu-\mathrm{Cl})_{2}\right]$ with $R=\mathrm{C}_{2} \mathrm{H}_{5} \quad$ (Bradley, Errington, Hursthouse \& Short, 1987), $R=\mathrm{C}_{2} \mathrm{Cl}_{5}$ (Drew, Fowles, Rice \& Rolfe, 1971), and $R=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ (Ashcroft, Clark, Nielson \& Rickard, 1986).

We thank the SERC for a research grant.

References

Ashcroft, B. R., Clark, G. R., Nielson, A. J. \& Rickard, C. E. F. (1986). Polyhedron, 5, 2081-2091.

Bradley, D. C., Errington, R. J., Hursthouse, M. B. \& Short, R. L. (1987). J. Chem. Soc. Dalton Trans. Submitted.

Drew, M. G. B., Fowles, G. W. A., Rice, D. A. \& Rolfe, N. (1971). J. Chem. Soc. Chem. Commun. pp. 231-232.

International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99, 149. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Sheldrick, G. M. (1985). SHELXTL. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, revision 5. Univ. of Göttingen, Federal Republic of Germany.

Acta Cryst. (1987). C43, 2224-2226

A trans-Chelating Oxybisphosphine Complex of PtBr_{2}

By Helen Stoeckli-Evans,* Pramesh N. Kapoor \ddagger and Werner Marty \dagger
Institut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland

(Received 5 June 1987; accepted 18 June 1987)

Abstract

. Dibromo\{[3,3'-oxybis(phenylenemethylene)]bis(diphenylphosphine) $\}$ platinum(II)-acetonitrile $\quad(2 / 1), \quad\left[\mathrm{PtBr}_{2}\left(\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{OP}_{2}\right)\right] \cdot \frac{1}{2} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}, \quad M_{r}=$ 942.1, monoclinic, $\quad P 2_{2} / n, \quad a=9.923$ (8), $\quad b=$ 16.389 (2), $\quad c=21.527$ (2) $\AA, \quad \beta=97.26$ (4) ${ }^{\circ}, \quad V=$ $3472.8 \AA^{3}, Z=4, D_{x}=1.802 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1828$, $\lambda($ Mo $K \alpha)=0.71073 \AA, \mu=62.4 \mathrm{~cm}^{-1}$, room temperature, final $R=0.035$ for 5561 unique reflections with $F_{o}>5 \sigma\left(F_{o}\right)$. The coordination about the Pt atom is square planar. The Pt atom is displaced by 0.04 (1) \AA towards the O atom from the best plane through atoms $\mathrm{P}_{2} \mathrm{Br}_{2}$. The phenyl rings in the trans-spanning 3,3'oxydibenzyl ligand are inclined at an angle of $60(1)^{\circ}$, and angle $\mathrm{C}(\mathrm{Ph})-\mathrm{O}-\mathrm{C}(\mathrm{Ph})$ is $121 \cdot 6(5)^{\circ}$. Angles $\mathrm{C}(\mathrm{Ph})-\mathrm{P}-\mathrm{Pt}$ in the equatorial plane are opened to an average value of $120 \cdot 1(1)^{\circ}$ owing to steric hindrance involving the Br atoms.

^[* To whom all correspondence should be addressed. \dagger Deceased 20 September 1986. \ddagger Visiting faculty member; permanent address: Department of Chemistry, Delhi University, Delhi-1 10007, India.]

Experimental. Yellow bipyramidal crystals grown from a $\mathrm{CH}_{3} \mathrm{CN}$ /toluene solution. Stoe-Siemens AED2 fourcircle diffractometer, monochromated Mo K α radiation, ω / θ scan mode, $2 \theta_{\text {max }} 55^{\circ}, 8506$ reflections $\pm h+k+l$. Four check reflections, 3% intensity variation. Crystal cut to $0.27 \times 0.27 \times 0.42 \mathrm{~mm}$, empirical absorption correction [programs REDU4 and EMPIR (Stoe \& Co., 1985)], 8ψ scans in 2θ range $11-39^{\circ}$, max., min. transmission $0.253,0.170$ respectively. 7700 unique reflections ($R_{\text {int }}=0.033$), 5566 with $F_{o}>5 \sigma\left(F_{o}\right), 5561$ used for all calculations, five (probably suffering from extinction) removed. Index range $h-12 \rightarrow 12, k 0 \rightarrow 21 l$ $0 \rightarrow 27$. Cell constants from $\pm \omega$ values of 12 reflections and their equivalents in the 2θ range $15-28^{\circ}$. Structure solved by Patterson and Fourier methods. H atoms from difference syntheses, refined isotropically. A disordered $\mathrm{CH}_{3} \mathrm{CN}$ molecule with the central C atom located on a center of symmetry was assumed to occupy two alternative orientations inclined at an angle of $5(2)^{\circ}$, hence $\mathrm{C}\left(\mathrm{H}_{3}\right)$ and N atoms given occupancy of $0 \cdot 5$. Despite large correlation coefficients between the © 1987 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44157 (9 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

